Conditions for the Parameters of the Block Graph of Quasi-Symmetric Designs
نویسندگان
چکیده
A quasi-symmetric design (QSD) is a 2-(v, k, λ) design with intersection numbers x and y with x < y. The block graph of such a design is formed on its blocks with two distinct blocks being adjacent if they intersect in y points. It is well known that the block graph of a QSD is a strongly regular graph (SRG) with parameters (b, a, c, d) with smallest eigenvalue −m = −k−x y−x . The classification result of SRGs with smallest eigenvalue −m, is used to prove that for a fixed pair (λ > 2,m > 2), there are only finitely many QSDs. This gives partial support towards Marshall Hall Jr.’s conjecture, that for a fixed λ > 2, there exist finitely many symmetric (v, k, λ)-designs. We classify QSDs with m = 2 and characterize QSDs whose block graph is the complete multipartite graph with s classes of size 3. We rule out the possibility of a QSD whose block graph is the Latin square graph LSm(n) or complement of LSm(n), for m = 3, 4. SRGs with no triangles have long been studied and are of current research interest. The characterization of QSDs with triangle-free block graph for x = 1 and y = x+1 is obtained and the non-existence of such designs with x = 0 or λ > 2(x+2) or if it is a 3-design is proven. The computer algebra system Mathematica is used to find parameters of QSDs with triangle-free block graph for 2 6 m 6 100. We also give the parameters of QSDs whose block graph parameters are (b, a, c, d) listed in Brouwer’s table of SRGs.
منابع مشابه
New quasi-symmetric designs by the Kramer-Mesner method
A t-(v, k, λ) design is quasi-symmetric if there are only two block intersection sizes. We adapt the Kramer-Mesner construction method for designs with prescribed automorphism groups to the quasi-symmetric case. Using the adapted method, we find many new quasi-symmetric 2-(28, 12, 11) and 2-(36, 16, 12) designs, establish the existence of quasi-symmetric 2-(56, 16, 18) designs, and find three n...
متن کاملConstruction of a Class of Quasi-Symmetric 2-Designs
In this article we study proper quasi-symmetric 2 − designs i.e. block designs having two intersection numbers and , where 0 < < . Also, we present a construction method for quasi-symmetric 2 − designs with block intersection numbers and + 1, where is a prime number, under certain conditions on the cardinality of point set.
متن کاملBinary codes and quasi-symmetric designs
obtain a new for the of a-(u, A) design the block intersection designs are eliminated by an ad hoc coding theoretic argument. A 2-(v, k, A) design 93 is said to be quasi-symmetric if there are two block intersection sizes s1 and s2. The parameters of the complementary design !3* are related to the parameters of 93 as follows: Here Ai denotes the number of blocks through a given i points (and A ...
متن کاملCharacterization of quasi-symmetric designs with eigenvalues of their block graphs
A quasi-symmetric design (QSD) is a (v, k, λ) design with two intersection numbers x, y, where 0 ≤ x < y < k. The block graph of a QSD is a strongly regular graph (SRG), whereas the converse is not true. Using Neumaier’s classification of SRGs related to the smallest eigenvalue, a complete parametric classification of QSDs whose block graph is an SRG with smallest eigenvalue −3, or second large...
متن کاملFibonacci Designs
A Metis design is one for which v = r + k + 1. This paper deals with Metis designs that are quasi-residual. The parameters of such designs and the corresponding symmetric designs can be expressed by Fibonacci numbers. Although the question of existence seems intractable because of the size of the designs, the nonexistence of corresponding di¤erence sets can be dealt with in a substantive way. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015